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Abstract

Experience has shown that clustering objects into groups is a useful way to
analyze and order information. It turns out that many clustering problems
are intractable. Several heuristic and approximation algorithms exist, however
in many applications what is desired is an optimum solution. Finding an
optimum result for the CrLusTER EDITING problem has proven non-trivial, as
CrusteR EpITING is N/P-Hard [KM86], and APX-Hard, and therefore cannot be
approximated within a factor of (1 + €) unless Poly =N'P [SST04].

The algorithmic technique of Parameterized Complexity has proven an effective
tool to address hard problems. Recent publications have shown that the CLusTER
EpiTinG problem is Fixed Parameter Tractable (FPT ). That is, there is a fixed

parameter algorithm that can be used to solve the CLusTER EDITING problem.

Traditionally, algorithms, in computer science, are evaluated in terms of the time
needed to determine the output as a function of input size only. However,
typically in science most real datum contains inherent structure. For Fixed
Parameter Tractable (FPT) algorithms, permitting one or more parameters to be
given in the input, to further define the question, allows the algorithm to take

advantage of any inherit structure in the data [ECFLRO5].

A key concept of FPT is kernelization; that is, reducing a problem instance
to a core hard sub-problem. The previous best kernelization technique for
CrLusTER EDITING was able to reduce the input to within k* [GGHNO5] vertices,
when parameterized by k, the edit distance. The edit distance is the number
of edit operations required to transform the input graph into a cluster graph (a
disjoint union of cliques). Experimental comparisons in [DLL"06] showed that
significant improvements were obtained using this reduction rule for the CLusTER
EpITING problem. The study reported in this thesis presents three polynomial-
time, many-to-one kernelization algorithms for the CLusTer Ep1TING problem, the

best of these algorithms produces a linear kernel of at most 6k vertices.

19






Abstract 21

In this thesis, we discuss how using new FPT techniques including extremal
method compression routine and modelled crown reductions [DFRS04] can be used
to kernelize the input for the CLusTER EpITING problem. Using these new kernel-
ization techniques, it has been possible to improve the number of vertices in the
data sets that can be solved optimally, from the previous maximum of around 150
vertices to over 900. More importantly, the edit distance of the graphs that could
be solved as also increased from around k = 40 to more than k = 400.

This study also provides a comparison of three inductive algorithmic techniques:

* compression routine using a constant factor approximation — Compression Crown
Rule Search Algorithm;

* extremal method (coordinatized kernel) [PR05], using a constructive form of
the boundary lemma — Greedy Crown Rule Search Algorithm;

e extremal method, using an auxiliary (TWIN) graph structure — Crown Rule
TWIN Search Algorithm.

Algorithms derived using each of the above techniques to obtain linear kernels
for the CrusTer EpITING problem have been evaluated using a variety of data
with different exploratory properties. Comparisons have been made in terms of

reduction in kernel size, lower bounds obtained and execution time.

Novel solutions have been required to obtain approximations within a reasonable
time, for the CLusTER EDITING problem that is within a factor of four of the edit
distance (minimum solution size). Most approximation methods performed very
badly for some graphs and well for others. Without any guide regarding the

quality of the result, a very bad result can be assumed to be close to optimum.

Our study has found that just using the highest available lower bound for the
approximation is insufficient to improve the result. However, by combining both
the highest lower bound obtained and the reduction obtained using kernelization,

a 30-fold improvement in the approximation performance ratio is achieved.
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